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A NEW APPROACH TO STUDYING THE DYNAMICS

OF A THIN CURVED VORTEX

UDC 532.527A. I. Gudimenko

The paper studies the dynamics of a thin curved vortex in a potential flow of an ideal incompressible
fluid. The flow is specified by a number of geometrical restrictions and does not satisfy the Biot–
Savart law. The form of the derived equation of the vortex dynamics coincides with the form of
the well-known equation of local induction for self-induced vortex motion. The parameters of the
new equation are simultaneously flow parameters, and in this sense, they do not show uncertainty
typical of classical equations. The coefficient of the new equation can take any specified values (not
necessarily much greater than unity, as required according to the concept of local induction) and
generally is a function of a natural filament parameter.

Introduction. The well-known analytical methods for determining the dynamics of a thin, optionally
weakly-curved vortex submerged in a potential flow of an ideal incompressible fluid are based on the assumption
that this flow is induced by the vortex, at least at sufficiently large distances from the vortex. It is assumed that the
interaction pattern is defined by the Biot–Savart law, which relates the spatial vorticity distribution to the induced
velocity.

The simplest approach (see, for example, [1]) considers the vortex as a filament, i.e., the fluid flow inside and
near the vortex core is ignored. The vortex dynamics is determined directly from the Biot–Savart integral, and the
known singularities in the integral are eliminated using two assumptions: 1) local induction approximation, i.e., the
assumption that a neighboring segment of finite length l much larger than the vortex core radius makes a dominant
contribution to the velocity of a filament’s particle; 2) the assumption that a neighboring segment of length ε of the
order of the vortex core radius makes a negligibly small contribution to the particle velocity. In a sense, the second
assumption is a consequence of the first assumption. The so-called equation of local induction obtained using the
indicated approach can be written as

∂X

∂t
=

Γ
8π

ln
( l
ε

)
iψ∗N + c.c., (1)

where X(t, s) is the radius-vector of a filament’s particle as a function of time t and the natural parameter (arc
length) of the filament s, Γ is the filament circulation, i is imaginary unit, ψ is the natural curvature of the filament,
and N is the normal component of the natural reference point of the filament; the asterisk and c.c. denote complex
conjugation.

We note that Eq. (1) belongs to the class of equations integrated using the inverse-scattering method and
is equivalent to well-known equations such as the Heisenberg magnetic equation and the nonlinear Schrödinger
equation [2].

In papers [3–7], a more systematic analysis of flow is given, and the fluid flow inside and near the vortex
core is taken into account. The vortex dynamics is determined by joining asymptotic expansions in ε of the internal
and external fields of fluid velocities, and the external field is determined from the Biot–Savart integral in the local
induction approximation. The equation obtained in the first approximation in ε differs from Eq. (1) by the presence
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of an additional component in the factor at iψ∗N , whose value depends on the profile of the initial approximation
to the axial and azimuthal fluid velocities in the vortex core.

Leibovich, et al. [8, 9] describe various methods for studying the dynamics of a weakly curved vortex, i.e., a
vortex whose characteristic deviation from a straight vortex does not exceed the vortex core radius. In the present
paper, we do not consider the dynamics of this type of vortices.

The concept of local induction underlying the approaches indicated above cannot be considered adequate.
First, within the framework of this concept, the parameters l and ε remain undefined. Second, the local induction
approximation restricts the possible values of the equation coefficient by the condition ln (l/ε) � 1. Third, the
requirement of constant length l along the filament cannot apparently be satisfied for a vortex of an arbitrary
shape. We note that in the case of a weakly curved vortex, the concept of local induction does not agree with
experimental data. For example, in [10], the factor ln (l/ε) was estimated within unity, and in [11], this factor is a
function of local vortex curvature.

In the present paper, we propose to derive the equation of dynamics for a thin curved vortex for the potential
flow that does not satisfy the Biot–Savart law. As in [3–7], we obtained the equation of vortex dynamics by joining
asymptotic expansions of the internal and external fields of fluid velocities. However, unlike in the papers cited,
in which the external field is determined from the Biot–Savart integral in the local induction approximation, we
imposed a number of natural constraints on the flow that do not contradict hydrodynamic equations. Under these
constraints, the vortex dynamics is described by an equation whose form coincides with that of the equation of local
induction. The parameters of the new equation, which are simultaneously flow parameters, are no longer uncertain.
The coefficient of the new equation can be an arbitrary function of the natural parameter of the filament. This
function specifies both the vortex dynamics and the external flow in which this dynamics occurs.

Generally, the indicated constraints reduce to the requirement that in a small neighborhood of an arbitrary
filamentary particle, the external field should coincide with the field induced by a straight filament that is a tangent
to the initial vortex filament at this point. This requirement can be considered a new principle for determining the
dynamics of a thin curved vortex and a reasonable alternative to the local induction concept.

The external field can be determined by construction of a special coordinate system for an arbitrary vortex
filament in a small neighborhood. In this system, one of the coordinates is identified with the external-field potential
and the other two coordinates parametrize an arbitrary equipotential field surface. Obviously, any restriction
imposed on the external flow is simultaneously a restriction on the coordinates of this system. The system is
constructed by expansion in a small parameter and is used as a working system in determining the internal field
from hydrodynamic equations.

1. Preliminary Data. We assume that a world volume of fluid is immersed in the coordinate Galilean
space R × R3. This assumption makes values dimensionless and distinguishes a characteristic scale — unity. To
this scale unit, we will relate the time parameter of vortex motion t, the natural parameter of the vortex s, the
characteristic radius of vortex curvature, and vortex circulation Γ. The quantity ε � 1 characterizes distances of
the same order as the vortex core radius.

Let Ut and γt denote the fluid region and vortex filament in R3, respectively, at time t. We specify the
natural curvature ψ and the reference 〈N , t〉 of the filament γt by the equations

ψ = æ exp

(
i

s∫
τ ds′

)
, N = (n+ ib) exp

(
i

s∫
τ ds′

)
, t = Xs,

where æ is the curvature, τ is the torsion, n and b are the normal and binormal to the filament, respectively, and
X(t, s) is the natural parametrization of the filament γt. Then, the Serret–Frenet formulas are valid:

N s = −ψt, ts = (ψ∗N + ψN∗)/2. (2)

As the vortex filament, we take a curve in R3 together with a numerical parameter that means circulation of
this filament. A classical expression for the field induced by a vortex filament is given by the Biot–Savart integral.

In the formulas, unless otherwise specified, all subscripts and superscripts, except for n, vary from 1 to 3.
The subscript n is an arbitrary integer. Summation is performed over repeated indices.

2. Formulation of the Problem of Determining the External Field. The restrictions imposed on
the external potential flow can be considered as requirements that determine the coordinate system (r, ϕ, s) at an
arbitrary time t, where ϕ is the external-field potential at time t and r and s are some coordinates on the equipotential
surface ϕ. The coordinate system (r, ϕ, s) is defined in a certain region of the Euclidean space R3; therefore, it is
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possible to describe this system in terms of components of the metric induced by a scalar product in R3. Thus, the
problem considered reduces to determining the metrics components in the coordinate system (r, ϕ, s) at an arbitrary
time t.

At any time t, the coordinate system (r, ϕ, s) is associated with the filament γt. As the domain of definition
of the coordinates, we take a neighborhood Ut \γt of the filament γt located rather close to γt, i.e., the distance from
any point of the neighborhood Ut to γt is of the same asymptotic order as ε. We require that in this neighborhood
as r → 0, the coordinates r, ϕ, and s form a local (at any point of the filament γt) cylindrical coordinate system with
the natural parameter s along the filament. In particular, this requirement means that in a small neighborhood of
an arbitrary point of the filament γt, the external field coincides with the field induced by a straight vortex filament
tangent to γt at this point.

We show how to define the coordinates r, ϕ, and s by the use of metrics. Here we are dealing with the
vector-field basis (∂1, ∂2, ∂3) in Ut \ γt, which is related to the coordinate basis (∂r, ∂ϕ, ∂s) of the system (r, ϕ, s) by

∂1 = ∂r, ∂2 = r−1∂ϕ, ∂3 = ∂s.

We use x = x(t, r, ϕ, s) to denote the mapping of conversion from the sought coordinates in Ut \ γt to Cartesian
coordinates and set

ek := ∂kx. (3)

Using the vector fields (3), we determine hkl, bmkl, and γmkl , assuming that

hkl = (ek, el), ∂lek − ∂kel = bmklem, ∂lek = γmklem, (4)

where (·, ·) is a scalar product in R3. The quantities hkl are the metrics components in Ut\γt in the basis (∂1, ∂2, ∂3).
The coefficients bmkl are calculated from the formula

bmkl = r−1δm2 (δ1
kδ

2
l − δ1

l δ
2
k), (5)

where δkl is the Kronecker symbol. The quantities γmkl are called the coefficients of canonical plane connectivity
in Ut \ γt [12, 13]. Assuming that

bmkl := hmib
i
kl, γmkl := hmiγ

i
kl, (6)

it can easily be shown (see [12]) that

γmkl = (∂khml + ∂lhmk − ∂mhkl)/2 + (bklm + bmkl − blmk)/2. (7)

We consider the system of equations defined by the last relation in (4). This is an overdetermined system of first-
order partial equations. Commutation of the coordinate fields (∂r, ∂ϕ, ∂s) in Ut \ γt is a condition of solvability of
this system. Applying this condition to the system, we have

Rgh,ij := ∂iγghj − ∂jγghi + hklγkgjγlhi − hklγkgiγlhj + γghkb
k
ij = 0, (8)

where hkl are the elements of the inverse matrix of hkl. Equation (8) is called the condition of zero curvature of
the connectivity of γmkl . Relations (5)–(8) represent the necessary and sufficient conditions for the fact that the
functions hkl determine the coordinate system (r, ϕ, s).

We write the condition under which the coordinate ϕ is the fluid velocity-field potential in terms of metric
components. As the fluid is incompressible, this condition implies that ϕ is a harmonic (in Ut \ γt) function, i.e.,
∆ϕ = 0, where ∆ is a three-dimensional Laplace operator. Hence, in the basis (∂1, ∂2, ∂3), we have

r−1h12 + hklγ2
kl = 0. (9)

Let us formulate the problem. Specifying the above requirements for the coordinate system (r, ϕ, s), we
determine the “extended” (with respect to r) variable ρ := ε−1r and require that the following asymptotic expansion
holds:

x = x0 + εx1 + . . .+ εnxn + . . . . (10)

Then,

ek = ek;0 + εek;1 + . . .+ εnek;n + . . . , hkl = hkl;0 + εhkl;1 + . . .+ εnhkl;n + . . . . (11)
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We also require satisfaction of the boundary condition

lim
ρ→0

hkl;n = 0 (k = l, n > 1) (12)

and the relations

x0 := X(t, s), hkl;0 := δkl, (13)

where δkl is the Kronecker symbol.
In the present paper, we confine ourselves to calculating the first approximation to hkl. As the governing

system, we take Eqs. (4)–(7), the zero-curvature condition (8), and the harmonicity condition (9).
3. Calculation of the Metrics Components in the Coordinates r, ϕ, and s. In the calculations,

we use a set of simple equalities hkl;0 = δkl, hkl;1 = −hkl;1, bklm;0 = bklm;0, etc., derived from formulas of the form
of (6). After substitution of the corresponding asymptotic relations into these formulas and separation of terms with
appropriate exponents ε, these formulas relate geometrical quantities to corresponding metrically dual quantities.

We write the system of equations for determining the quantities hkl;1. Using (7), we express conditions (8)
and (9) in terms of metric components, replace the metric components by their asymptotic expressions, and equate
to zero the sums of terms with ε−1 and ε0, respectively. As a result, considering the components R12,12, R13,13,
R23,23, R12,13, and R12,23, from (8), we obtain the equations

−1
2
∂2h22;1

∂ρ2
− 1

2ρ2

∂2h11;1

∂ϕ2
− 1
ρ

∂h22;1

∂ρ
+

1
2ρ

∂h11;1

∂ρ
+

1
ρ

∂2h12;1

∂ϕ∂ρ
+

1
ρ2

∂h12;1

∂ϕ
= 0; (14)

−1
2
∂2h33;1

∂ρ2
= 0, − 1

2ρ2

∂2h33;1

∂ϕ2
− 1

2ρ
∂h33;1

∂ρ
= 0; (15)

∂

∂ρ

( 1
2ρ

∂h13;1

∂ϕ
− 1

2ρ
∂ρh23;1

∂ρ

)
= 0,

∂

∂ϕ

( 1
2ρ

∂h13;1

∂ϕ
− 1

2ρ
∂ρh23;1

∂ρ

)
= 0, (16)

and from (9), we obtain the equation

− 1
2ρ

∂

∂ϕ

(
h11;1 − h22;1 + h33;1

)
+
∂h12;1

∂ρ
= 0. (17)

Eliminating the unknown variable h11;1 from (14) using (17), with accuracy to an arbitrary function that does not
depend on ϕ, we obtain

∆
(
h22;1 − 2

∫
h12;1 dϕ

)
= −1

ρ

∂h33;1

∂ρ
+

1
ρ2

∂2h33;1

∂ϕ2
, (18)

where ∆ is a two-dimensional Laplace operator:

∆ :=
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂ϕ2
.

Equations (15)–(18) are the desired equations.
The solution of system (15) satisfying boundary condition (12) has the form

h33;1 = −ψ∗ρeiϕ + c.c., (19)

where ψ(t, s) is the constant of integration. With allowance for (12) and (19) and without seeking generality, we
take the following equation as a solution of Eq. (18):

h22;1 − 2
∫
h12;1 dϕ = ln (αρ)ψ∗ρeiϕ + c.c., (20)

where α(t, s) is an arbitrary positive function. As solutions of system (16), we consider the arbitrary functions h13;1

and h23;1 that satisfy the equation

∂h13;1

∂ϕ
− ∂ρh23;1

∂ρ
= 0.

The coefficient h11;1 is obtained by substitution of (19) and (20) into (17). The choice of h12;1 is arbitrary.
We determine the geometrical meaning of the constant of integration ψ. Into the last equation of (4), we

substitute expansion (11) and the known expansion of connectivity coefficients determined with accuracy to ε0. In
particular, for ε−1 and ε0, we have
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∂e1;0

∂ϕ
= e2;0,

∂e2;0

∂ϕ
= −e1;0,

∂ek;0

∂ρ
=
∂e3;0

∂ϕ
= 0; (21)

∂e1;0

∂s
= −1

2
ψ∗eiϕe3;0 + c.c.,

∂e3;0

∂s
=

1
2
ψ∗eiϕ(e1;0 + ie2;0) + c.c. (22)

The solution of system (21) is written as

e1;0 = N∗eiϕ/2 + c.c., e2;0 = N∗ieiϕ/2 + c.c., e3;0 = t. (23)

As follows from (13), a pair of 〈N , t〉 forms a normalized dyad of vectors, and the vector t is a tangent to γt.
Substitution of (23) into (22) yields a system of equations whose form coincides with that of the Serret–Frenet
system (2). Hence, ψ is the natural curvature and 〈N , t〉 is the natural reference of the curve γt.

Thus, the problem of determining the external field (in the sense indicated above) is solved.
Remark 1. Reverting to the initial variable r, we find that the field hkl depends on the parameter α/ε,

which can take arbitrary positive values. Varying this parameter, we obtain a set of external fields. The question
of whether this set contains a filament-induced field remains open.

4. Hydrodynamic Equations in the Coordinates r, ϕ, and s. Below, we relate the fluid flow with
moving curvilinear coordinates r, ϕ, and s in Ut \ γt.

We use uk, vk, and hk to denote the velocity-field components in the basis (∂1, ∂2, ∂3) at time t for absolute
fluid motion, relative fluid motion, and the motion of the coordinate system, respectively. Let (θ1, θ2, θ3) denotes
the basis in Ut \ γt which is dual to the basis (∂1, ∂2, ∂3). We set uk := hklu

l, vk := hklv
l, and hk := hklh

l.
The quantities uk, vk, and hk are the components in the basis (θ1, θ2, θ3) of the fields that are metrically dual to
the indicated velocity fields. Below, we use only the quantities uk, vk, and hk (and not the quantities uk, vk, and
hk); therefore, the term “metrically dual” in the names of the corresponding fields is omitted. Thus, the obvious
relation uk = vk + hk should be interpreted as the “equality of the velocity field of absolute fluid motion to the
sum of the velocity fields of relative fluid motion and the motion of the coordinate system.” We note that for the
components hk, an expression similar to that for the components hkl in (4) can be written as

hk = (ek, e0)
(
e0 :=

∂x

∂t

)
. (24)

In the moving curvilinear coordinates r, ϕ, and s in the basis (θ1, θ2, θ3) in Ut \ γt, the Euler equations and
discontinuity equations have the form

∂

∂t
ui + vmh

ml(∂lui − ∂iul + ukb
k
li) + ∂i

(
p+

1
2
hklukul

)
= 0; (25)

−hkl∂kul + hklγmlkum = 0. (26)

The validity of this representation can be shown by converting from the basis (θ1, θ2, θ3) of the coordinates considered
to a Cartesian basis of natural inertial coordinates in R3.

5. Formulation of the Problem of Determining the Vortex Dynamics. We assume that the region Ut
contains not only the vortex filament γt but the vortex studied. We take that circulations of both the filament and
the vortex coincide. We take the boundary-surface equation for the vortex in the form r = rB(t, ϕ, s).

Let us formulate general requirements for the flow. We take ε as a small parameter of the problem, convert
to the variable ρ := ε−1r, and preserve all the previous assumptions on the asymptotic behavior of the metrics. We
also require that

vk = ε−1vk;−1 + vk;0 + . . .+ εnvk;n + . . . , hk = hk;0 + εhk;1 + . . .+ εnhk;n + . . . ,

ρB = ρ0 + ερ1 + . . .+ εnρn + . . . (ρB := ε−1rB),

and

lim
ρ→0

vk;n = 0, ρ0 = ρ0(t, s) (k = 1, 2; n > −1). (27)

For the external field, we take

v1;−1 = 0, v2;−1 = v(ρ), v3;−1 = w(ρ), (28)

where v and w are arbitrary functions in Ut and v → 0 as ρ→ 0. We assume that this field is continuous over the
entire Ut.
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The external field of absolute velocities is determined as a differential of the coordinate ϕmultiplied by Γ/(2π)
(Γ is the filament circulation). In the basis (θ1, θ2, θ3), the field has the components

u1 = u3 = 0, u2 = Γ/(2πr).

Hence,

u1;−1 = u3;−1 = 0, u2;−1 = Γ/(2πρ), uk;n = 0 (n > 0). (29)

We define the dynamics of the vortex from the joining condition as ρ → ∞ for the internal and external
fields of absolute velocities up to a zeroth approximation. The velocity field for the coordinate system motion is
determined from Eq. (24), and the internal field of relative fluid velocities is determined from Eqs. (25) and (26).

6. The Equation of Vortex Dynamics. We apply the joining condition to the initial approximations of
the internal and external fields of absolute fluid velocities. By virtue of the conditions of flow potentiality outside the
vortex and the continuity conditions for the velocity fields, in passage through the vortex boundary, from Eqs. (28)
and (29), we have v = Γ/(2πρ) and w = 0 for ρ > ρ0, i.e., in the initial approximation, the internal and external
velocity fields coincide outside the vortex and at the vortex boundary.

We calculate the zeroth approximation to the velocity field of the coordinate system. We substitute (10)
and (11) into (24) and separate terms with ε0 in the equation obtained. With allowance for (23), we have

h1;0 = (Xt,N
∗)eiϕ/2 + c.c., h2;0 = (Xt,N

∗)ieiϕ/2 + c.c., h3;0 = (Xt, t),

where Xt := ∂X/∂t. We note that

∂h1;0

∂ϕ
= h2;0,

∂h2;0

∂ϕ
= −h1;0. (30)

Let us calculate the zeroth approximation to the radial and rotational components of the internal field of
relative fluid velocities. With allowance for (9), we write (26) in the form

−hkl∂kul + hklγ1
lku1 − h12u2/r + hklγ3

lku3 = 0. (31)

We substitute the asymptotic expressions for hkl, uk, and γmkl into Eq. (31) and separate terms with ε−1. With
allowance for (30), we have

−1
ρ

∂ρv1;0

∂ρ
− 1
ρ

∂v2;0

∂ϕ
+ ωh12;1 +

∂wh13;1

∂ρ
+
w

ρ

(
h13;1 +

∂h23;1

∂ϕ

)
= 0, (32)

where ω := vρ + v/ρ. Equation (32) is satisfied by introducing the stream function ψ12;1:

v1;0 =
1
ρ

∂ψ12;1

∂ϕ
+ wh13;1, v2;0 = −∂ψ12;1

∂ρ
+ ρω

∫
h12;1 dϕ+ wh23;1. (33)

We exclude the pressure from the first two equations (i = 1, 2) of system (25) and substitute the asymptotic
expressions for vk, hk, and hkl with the coefficients v1;0 and v2;0 in the form of (33) into the obtained equation.
For ε−2, we have

∆
∂ψ12;1

∂ϕ
− ωρ

v

∂ψ12;1

∂ϕ
+ ω

(∂h22;1

∂ϕ
− 2h12;1

)
+
wwρ
v

∂h33;1

∂ϕ
= 0, (34)

where ∆ is a two-dimensional Laplace operator. We will seek solutions of Eq. (34) in the form

ψ12;1 = b(t, ρ, s) + c(ρ)ψ∗eiϕ + c.c. (35)

Substitution of (19), (20), and (35) into (34) yields cρρ + cρ/ρ− c/ρ2−ωρc/v = −ωρ ln (αρ) + ρwwρ/v. Integration
of the above equation with allowance for (27) gives

c = v

ρ∫
0

dη

ηv2(η)

η∫
0

(−ζ2vω ln (αζ) + ζ2wwζ) dζ. (36)

Equations (33), (35), and (36) define the zeroth approximation to the radial and rotational components of the
internal fields of relative fluid velocities.

We join the zeroth approximations of the internal and external fields of absolute fluid velocities. In particular,
for the internal field, we have
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lim
ρ→∞

(v1;0 + h1;0) = 0.

After substitution of the explicit expressions for v1;0 and h1;0 and several simple transformations, we obtain the
desired equation of vortex dynamics

∂X

∂t
=

Γ
8π

(ln (αρ0)−A(ρ0))iψ∗N + c.c. + (Xt, t)t, (37)

where

A(ρ) :=
4π2

Γ2

( ρ∫
0

ζv2 dζ − 2

ρ∫
0

ζw2 dζ

)
.

We note that the expression for A(ρ0) coincides with the corresponding expression obtained in [2–6]. The
value of this parameter is determined by the initial approximation to the axial and azimuthal fluid velocities in the
vortex core. For example, for the initial fluid velocity distribution, corresponding to the rigid-body rotation, we
have A(ρ0) = 1/4.

Without loss for generality, the third term on the right side of Eq. (37) can be set equal to zero. The
procedure for eliminating this term is as follows: starting from Sec. 4, it is necessary to convert from the coordinate
system (r, ϕ, s) to the system (r, ϕ, ξ), where ξ is a parameter along the filament γt for which (∂X(t, ξ)/∂t, t) = 0.
In this case, all quantities in the formulas should be still related to the basis (∂1, ∂2, ∂3). Then, the calculations
performed under Sec. 6 remain unchanged, except for formula (37), in which the third term is absent.

If the initial approximation to the vortex core radius is constant along the filament and with time, then
according to Remark 1 in Sec. 3, the quantity ln (αρ0) is a parameter of the external field. By construction, this
parameter is an arbitrary function of t and s. The choice of this function specifies both the vortex dynamics and
the flow in which this dynamics occurs. In particular, the integrated vortex dynamics occurs if this parameter is a
constant.

Conclusions. A new method for determining the dynamics of a thin curved vortex in the potential flow of an
ideal incompressible fluid was proposed. Traditionally, the vortex dynamics was determined under the assumption
that the potential flow, at least at large distances from the vortex, satisfies the Biot–Savart law. Because the induced
effect on the entire vortex flow was difficult to estimate, the concept of local induction was used. In the new method
proposed here, the indicated assumption is ignored and the flow is constructed on the basis of the requirement that
the external field of fluid velocities coincide locally with the field induced by an appropriate straight vortex.

The equation of vortex dynamics was obtained, which coincided in form with the classical equation of local
induction. The parameters of the new equation have the meaning of flow parameters, and the coefficient of this
equation does not necessarily exceeds unity.

Unlike the traditional methods, the new method for determining the vortex dynamics provides an analytical
proof of the existence of flows that show this dynamics, particularly, the integrated dynamics of vortex.

The method for studying fluid flows by using coordinates related specifically to the potential flow component
is of interest. In these coordinates, the potential part of flow is trivial, i.e., it is an a priori known constant. Hence,
investigation of full flows reduces to investigation of the vortex components of these flows.
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